Generalized Evidence Pre-propagated Importance Sampling for Hybrid Bayesian Networks

نویسندگان

  • Changhe Yuan
  • Marek J. Druzdzel
چکیده

In this paper, we first provide a new theoretical understanding of the Evidence Pre-propagated Importance Sampling algorithm (EPIS-BN) (Yuan & Druzdzel 2003; 2006b) and show that its importance function minimizes the KL-divergence between the function itself and the exact posterior probability distribution in Polytrees. We then generalize the method to deal with inference in general hybrid Bayesian networks consisting of deterministic equations and arbitrary probability distributions. Using a novel technique called soft arc reversal, the new algorithm can also handle evidential reasoning with observed deterministic variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Inference Algorithms for Hybrid Bayesian Networks with Discrete Constraints

In this paper, we consider Hybrid Mixed Networks (HMN) which are Hybrid Bayesian Networks that allow discrete deterministic information to be modeled explicitly in the form of constraints. We present two approximate inference algorithms for HMNs that integrate and adjust well known algorithmic principles such as Generalized Belief Propagation, Rao-Blackwellised Importance Sampling and Constrain...

متن کامل

An Importance Sampling Algorithm Based on Evidence Pre-propagation

Precision achieved by stochastic sampling al­ gorithms for Bayesian networks typically de­ teriorates in face of extremely unlikely ev­ idence. To address this problem, we pro­ pose the Evidence Pre-propagation Impor­ tance Sampling algorithm (EPIS-BN), an importance sampling algorithm that com­ putes an approximate importance function using two techniques: loopy belief propaga­ tion [19, 25] a...

متن کامل

Probabilistic Inference using Linear Gaussian Importance Sampling for Hybrid Bayesian Networks

Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling the first proposed stochastic met...

متن کامل

Importance sampling algorithms for Bayesian networks: Principles and performance

Precision achieved by stochastic sampling algorithms for Bayesian networks typically deteriorates in the face of extremely unlikely evidence. In addressing this problem, importance sampling algorithms seem to be most successful. We discuss the principles underlying the importance sampling algorithms in Bayesian networks. After that, we describe Evidence Pre-propagation Importance Sampling (EPIS...

متن کامل

Importance Sampling for General Hybrid Bayesian Networks

Some real problems are more naturally modeled by hybrid Bayesian networks that consist of mixtures of continuous and discrete variables with their interactions described by equations and continuous probability distributions. However, inference in such general hybrid models is hard. Therefore, existing approaches either only deal with special instances, such as Conditional Linear Gaussians (CLGs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007